PRACTICE OUESTIONS FOR COMPETITIVE EXAMINATIONS
 SUB: MATHEMATICS
 TOPIC: DIFFERENTIAL EQUATIONS

1. The order and degree of the differential equation $\sqrt[3]{\frac{d y}{d x}}-4 \frac{d^{2} y}{d x^{2}}-7 x=0$ are a and b, then $a+b$ is:
(A) 3
(B) 4
(C) 5
(D) 6
2. A solution of the differential equation $\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0$ is
(A) $y=2$
(B) $y=2 x$
(C) $y=2 x-4$
(D) $y=2 x^{2}-4$
3. The solution of the differential equation $e^{x}(x+1) d x+\left(y e^{y}-x e^{x}\right) d y=0$, with initial condition $f(0)=0$, is
(A) $x e^{x}+2 y^{2} e^{y}=0$
(B) $2 x e^{x}+y^{2} e^{y}=0$
(C) $x e^{x}-2 y^{2} e^{y}=0$
(D) $2 x e^{x}-y^{2} e^{y}=0$
4. The equation of the curve passing through the origin and satisfying the differential equation $\frac{d y}{d x}=\sin (10 x+6 y)$ is
(A) $y=\frac{1}{3} \tan ^{-1}\left(\frac{5 \tan 4 x}{4-3 \tan 4 x}\right)-\frac{5 x}{3}$
(B) $y=\frac{1}{3} \tan ^{-1}\left(\frac{5 \tan 4 x}{4+3 \tan 4 x}\right)-\frac{5 x}{3}$
(C) $y=\frac{1}{3} \tan ^{-1}\left(\frac{3+\tan 4 x}{4-3 \tan 4 x}\right)-\frac{5 x}{3}$
(D) none
5. The solution of $y^{5} x+y-x \frac{d y}{d x}=0$ is
(A) $\frac{x^{4}}{4}-\frac{1}{5}\left(\frac{x}{y}\right)^{5}=C$
(B) $\frac{x^{5}}{5}+\frac{1}{4}\left(\frac{x}{y}\right)^{4}=C$
(C) $\frac{x^{4}}{4}+\left(\frac{x}{y}\right)^{5}=C$
(D) $\frac{x^{5}}{5}+(x y)^{4}=C$
6. The solution of the differential equation $\left(2 x-10 y^{3}\right) \frac{d y}{d x}+y=0$ is
(A) $x+y=c e^{2 x}$
(B) $y^{2}=2 x^{3}+c$
(C) $x y^{2}=2 y^{5}+c$
(D) $x\left(y^{2}+x y\right)=0$
7. The degree and order of the differential equation of the family of all parabolas whose axis is X axis, are respectively
(A) 2,1
(B) 1,2
(C) 3,2
(D) 2, 3
8. The differential equation of the family of curves represented by $y=a+b x+c e^{-x} \quad$ (where a, a, a are arbitrary constants) is
(A) $y^{\prime \prime \prime}=y^{\prime}$
(B) $y^{\prime \prime \prime}+y^{\prime \prime}=0$
(C) $y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}=0$
(D) $y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}=0$
9. The solution of the differential equation $y d x+\left(x+x^{2} y\right) d y=0$ is
(A) $\frac{1}{x y}+\log y=c$
(B) $\log y=c x$
(C) $\frac{-1}{x y}=c$
(D) $\frac{-1}{x y}+\log y=c$
10. Which one of the following curves represents the solution of the initial value problem $D y=100-y$, where $y(0)=50$.
(A)

(B)

(C)

(D)

11. The solution of $\frac{x d y}{x^{2}+y^{2}}=\left(\frac{y}{x^{2}+y^{2}}-1\right) d x$ is
(A) $y=x \cot (c-x)$
(B) $\cos ^{-1} \frac{y}{x}=-x+c$
(C) $y=x \tan (c-x)$
(D) $\frac{y^{2}}{x^{2}}=x \tan (c-x)$
12. The solution of the differential equation $\left(2 x-10 y^{3}\right) \frac{d y}{d x}+y=0$ is
(A) $x+y=c e^{2 x}$
(B) $y^{2}=2 x^{3}+c$
(C) $x y^{2}=2 y^{5}+c$
(D) $x\left(y^{2}+x y\right)=0$
13. If $y=e^{(k+1) x}$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=0$, then $k=$
(A) -1
(B) 0
(C) 1
(D) 2
14. A curve passes through the point $\left(1, \frac{\pi}{4}\right) \&$ its slope at any point is given by $\frac{y}{x}-\cos ^{2}\left(\frac{y}{x}\right)$. Then the curve has the equation
(A) $y=x \tan ^{-1}\left(\ln \frac{e}{x}\right)$
(B) $y=x \tan ^{-1}(\ln +2)$
(C) $y=\frac{1}{x} \tan ^{-1}\left(\ln \frac{e}{x}\right)$
(D) none
15. Solution of differential equation $\left(1+y^{2}\right) d x+\left(x-e^{\tan ^{-1} y}\right) d y=0$ is
(A) $y e^{\tan ^{-1} x}=\tan ^{-1} x+c$
(B) $x e^{\tan ^{-1} y}=\frac{1}{2} e^{2 \tan ^{-1} y}+c$
(C) $2 x=e^{\tan ^{-1} y}+c$
(D) $y=x e^{-\tan ^{-1} x}+c$
16.

A curve passing through $(2,3)$ and satisfying the differential equation $\int_{0}^{x} t y(t) d t=x^{2} y(x),(x>0)$ is
(A) $x^{2}+y^{2}=13$
(B) $y^{2}=\frac{9}{2} x$
(C) $\frac{x^{2}}{8}+\frac{y^{2}}{18}=1$
(D) $x y=6$
17. Number of values of $m \in N$ for which $y=e^{m x}$ is a solution of the differential equation $D^{3} y-3 D^{2} y-4 D y+12 y=0$ is
(A) 0
(B) 1
(C) 2
(D) more than 2
18. The general solution of the differential equation $\frac{d y}{d x}=\frac{1-x}{y}$ is a family of curves which looks most like which of the following?

(B)

(D)

19. The order and degree of the differential equation $\left(1+3 \frac{d y}{d x}\right)^{2 / 3}=4 \frac{d^{3} y}{d x^{3}}$ are
(A) $1,2 / 3$
(B) 3,1
(C) 1,2
(D) 3, 3
20. The solution to the differential equation $y \ln y+x y^{\prime}=0$, where $y(1)=e$ is
(A) $x(\ln y)=1$
(B) $x y(\ln y)=1$
(C) $(\ln y)^{2}=2$
(D) $\ln y+\left(\frac{x^{2}}{2}\right) y=1$

ANSWERS :
(1) C (2) C
(3) B
(4) A
(5) B
(6) C (7) B
(8) B (9) D (10) B (11) C (12) C
(13) C
(14) A
(15) B
(16) D
(17) C
(18) B
(19) D (20) A

